
CS441 - WIRELESS NETWORKS, FALL 2009 1

Channel Switching Overhead for 802.11b
Michael Harris <mharris@siu.edu>, Sarah Harvey <shharvey@siu.edu>

Abstract—IEEE 802.11b devices operate in the 2.4 GHz ISM
band the United States. Because of this, 802.11b devices are
susceptible to interference from a multitude of sources such
as microwave ovens and cordless phones. Interference from
other devices can lead to transmission failures and degraded
performance. Wireless devices may be configured to communicate
on different channels at different times as necessary to mitigate
the effects of interference. However, the determination of the
best possible channel at any given time, and the act of channel
switching, introduces a delay. This delay can lead to certain
transport-level protocols failing and restarting (i.e. TCP streams
timing out, thus disconnecting). Furthermore, the 802.11b pro-
tocol does not specify a mechanism by which channel switching
may be coordinated between communicating devices. Without
such a mechanism, communication would be interrupted until
both devices are again communicating on the same channel. We
propose to design a protocol by which channel switching behavior
may be coordinated between communicating 802.11b devices.
This protocol will be implemented using open source drivers
on Linux, and specifically target devices with drivers that work
with the mac80211 subsystem present in the Linux kernel. We
will measure the overhead incurred by channel switching and
suggest methods by which this effect may be mitigated.

I. ASSIGNMENT

In this project, using open source drivers for 802.11b, the
channels will be changed on the fly and the change time
overhead will be recorded when two wireless LAN cards are
talking to each other.

II. PLAN OF EXECUTION

A protocol is required to coordinate channel switching
behavior between two communicating nodes. Our ultimate
objective is to design and implement this protocol, to take mea-
surements of the time overhead incurred by channel switching,
and to derive the best possible solutions by which this may
be mitigated.

Our basic plan of execution consists of the following steps:

1) Design a channel switching technique to be integrated
in the existing IEEE 802.11 MAC protocol.

2) Standardize our operating environment. This will entail
the act of determining and documenting the configura-
tion requirements of a kernel on which our protocol may
be implemented.

3) Begin development of a proof-of-concept program using
nl80211 to implement the channel switching protocol.

4) Test the protocol and record the time overhead incurred
from the channel switching behavior.

5) Evaluate our findings and make changes as necessary.
6) Present a report with our findings.

Last modified December 12, 2009

III. ASSUMPTIONS

A. Wireless devices, drivers, and firmware

We focused our testing only on 802.11b devices that depend
on the mac80211 framework present in the Linux kernel.
Our available resources limit us to testing only the iwlcore
drivers (supporting Intel Wireless WiFi chipsets) and p54usb
drivers (supporting Intersil’s Prism54 chipset) [3].

Two of the laptops in the experiment made use of the Intel
Wireless WiFi 3945ABG Wireless miniPCI card supported by
iwlcore & iwl3945 [4].

One of the laptops in the experiment made use of a
Dell Computer Corp. Wireless 1450 Dual-band USB 2.0
[8] device with the ISL3887 chipset. This device required
external firmware to be loaded. This was supported by p54
& p54usb.

For monitoring 802.11 communications, two additional lap-
tops were used making use of Intersil’s Prism2.5 chipset.
These were supported with the orinoco and hostap
drivers, however due to limitations of the firmware, no custom
packets could be sent without severe modification of both the
driver and the firmware, thus these devices were used only to
verify the correctness of the custom protocol from an outside
viewpoint.

B. Operating environment

We are relying on mac80211/nl80211 framework API
due to its modular design and level of abstraction [2]. Arch
Linux [7] and Slackware Linux [6] were chosen as testing
environments due to their technical simplicity and lack of
unneeded bloat. This is crucial as many contemporary desktop
Linux distributions bundle in a variety of utilities for con-
figuration (some graphical), and the effects of any external
applications on these devices, directly or indirectly, must be
minimized.

C. Timeline

We have allocated 7 weeks of work for this project. The
timeline for our project is as follows:

• (10/18 - 10/31) The first 2 weeks will consist of the initial
protocol design.

• (11/01 - 11/07) The next 1 week will be spent standard-
izing our operating environment.

• (11/08 - 11/28) The next 3 weeks will be spent doing pro-
tocol implementation/module development and testing.

• (11/28 - 12/07) The next 1 week will be spent aggregating
our data and preparing a final report.

CS441 - WIRELESS NETWORKS, FALL 2009 2

Fig. 1. Conceptual representation of mac80211 framework

IV. MAC80211/CFG80211/NL80211

The mac80211/cfg80211 stack is a set of modules that
attempt to move the management of IEEE 802.11 frames out
of proprietary firmware and into some place more accessible,
namely kernelspace or userspace. This serves as an abstraction
layer to which both the hardware-level driver and the software-
level kernelspace or userspace can access, and thus can interact
each other without making use of direct low-level system calls
(as done with ioctl in Wireless Extensions). As the IEEE
802.11 standard is continually evolving, it is vital that the
software changes can keep up with the latest specifications, as
to be compliant with regulations. Furthermore, the prevalence
of SoftMAC devices in the consumer market continue to
prove the point that it is both cheaper and easier to make
changes in the software stack on barebone, skeletal hardware
as opposed to continually revising hardware design of chipsets.
Direct results of this effort have resulted in implementation of
802.11s (mesh networking) across all mac80211 devices, in
addition to generic implementations of WPA, WPA2, IBSS
(ad-hoc networking) etc.
nl80211 is a set of tools/libraries in userspace that allow

for direct interaction with mac80211. One of the most
obvious implementations is the iw package, which essentially
serves as a replacement for Wireless Tools. One of the more
interesting points to note is the fact that mac80211 imposes
a new scheme for managing wireless interfaces. Each wireless
device is represented as a phy physical device, from which
one or more virtual interfaces may be created. The phys are
never seen as Ethernet interfaces (e.g. via ifconfig); only
the virtual interfaces are technically exposed to the rest of
the system without nl80211. Although there are physical
limitations to this scheme (all virtual devices must be on
the same channel, etc.), this does allow for the creation
and manipulation of additional interfaces to the same device
without necessarily disrupting any concurrent communications
on wireless interfaces, making sharing of resources possible
across a variety of applications.

V. PROTOCOL DESIGN

Efficiently measuring the time between channel switches
mandated the creation of a new temporary protocol. The basic
scheme of the protocol involves a node or station continually
gathering data on communication latency (low-level), noise,
signal strength, and (link) quality. Should it find that any
or all of these suddenly deviate for the worse from the
average values, then it sends a channel switch request to
either its neighbors (ad-hoc/IBSS) or to the host access point
(infrastructure/BSS). Based on the situation of the other nodes,
the host AP or ad-hoc network will either approve or deny the
request.

Upon denial, the node waits for some contention period
while continuing to observe its communication situation, and
should the situation continue to be worse, it will make another
channel switch request. Upon approval, the node then switches
to a designated channel defined by the ad-hoc network or host
AP, and attempts to reauthenticate with the network.

The nature of the IEEE 802.11 protocol forced us to
consider channel switching in both station/AP and ad-hoc
network situations. As such, we have divided up the different
test cases in which we consider channel switching viable based
on whether the node is connected to an access point, or is part
of a decentralized ad-hoc network.

A. Channel Switching in infrastructure networks

The basic protocol in this situation is as follows:
• Data communication
• One or more nodes detect interference (increase in la-

tency, decrease in signal strength, etc.)
• One or mode nodes send CHSW REQ packet
• AP responds with an CHSW ACK, signaling to all

stations in vicinity that they need to switch
• Measurement of channel switch begins, measured by

node A
• AP forcibly disassociates all connected nodes, and resets

its buffer
• AP switches channels; nodes switch channels
• AP is ready for reassociation
• Nodes reconnect to AP
• Measurement of channel switch ends
From here, we can divide it up into several test cases in

which the protocol would be applicable.
1) 1 station, 1 AP: In this case, as node A is the sole client

served by AP, any requests for channel switching are granted
immediately.

2) Multiple stations, 1 AP: In this case, the access point
must have some way of determining when channel switching
should occur, given the fact there are more than two nodes
connected at any given time. In our protocol, we determined
that the AP should only grant a channel switch once more
than 50% of the nodes make a channel switch request within
a specified timeframe, e.g. 10 seconds.

CS441 - WIRELESS NETWORKS, FALL 2009 3

Fig. 2. One node, one AP

Fig. 3. Three nodes, one AP

B. Channel Switching in Ad-hoc Networks

Channel switching in ad-hoc networks1 becomes much
harder to coordinate as there is no centralized structure to
the network. As such, there is no easy way to figure out
when it becomes viable to make a channel switch, as it is
not possible to keep track of how many nodes are suffering
from interference at any given time, or is it possible to switch
any region of nodes, as that would fragment the network.
Our solution to this problem is through the designation of
temporary “virtual APs” to coordinate the channel switching
for the entire network. By adding a centralization element to
a decentralized network, we can thus easily apply the above
protocol with minor modifications.

The challenge then is how to determine the virtual APs in
an ad-hoc network that would be able to coordinate a channel
switch for the entire ad-hoc network. This is not an easy task.
We can only devise potential solutions to this problem, and
hope that future research yields better results.

1Also known as IBSS

Fig. 4. Sample ad-hoc network

One basic protocol in this situation would be as follows:
• Data communication
• Node H detects interference (increase in latency, decrease

in signal strength, etc.)
• Node H polls all other nodes to determine a suitable

temporary AP
– This is chosen as node with most links, and closest

(by number of hops) to client
• Act of polling updates all other nodes’ CHSW tables
• If node H is aware that other nodes wish to switch, it

sends CHSW REQ to E, the virtual AP
• E responds with an CHSW ACK, signaling to all stations

in vicinity that they need to switch
• CHSW ACK is propagated through the network
• Measurement of channel switch begins, measured by

node H (upon reception of CHSW ACK)
• All nodes disassociate, reset their buffers
• All nodes switch channels, prepare for reassociation
• Nodes reconnect
• Measurement of channel switch ends
Unfortunately due to time and resource constraints, we were

unable to fully test this protocol. The current implementation
involves channel switching overhead only between two ad-hoc
nodes.

VI. IMPLEMENTATION

Central to our protocol design was the creation and/or
modification of two existing IEEE 802.11 management frames
to facilitate coordination of channel switching. While it was
preferable to have two dedicated frame types for the im-
plementation of this protocol, due to limitations of wireless
hardware this is simply not possible; we found that custom
frames would either be dropped or generate errors in the soft-
ware whenever we attempted to queue them for transmission.
Instead, Probe Request/Response frames were modified by
appending an additional 4 bytes containing channel switch pro-
tocol information (reserve byte, size byte, REQ/ACK/NACK
byte, channel byte) to the data portion of the frame, as to

CS441 - WIRELESS NETWORKS, FALL 2009 4

Fig. 5. Modified Probe REQ/RESP to become CHSW REQ/RESP

remain compliant with the existing IEEE 802.11 protocol.
Thus any non-channel-switch capable AP or node could safely
respond and/or discard the packet as the CHSW data could be
regarded as extraneous. We thus created/modified programs
to listen for these frames and initiate the channel switch via
nl80211.

Driver implementations already include mechanisms to ac-
cess noise levels, signal levels, and link quality, such as that
through wireless-spy (iwspy) or radiotap headers. To
measure latency, we made use of a built-in mechanism in the
802.11 protocol, namely Probe Request/Response. At various
intervals, a burst of 30 or so Probe Request packets would
be sent, and upon reception of Probe Response packets, min-
imum, maximum, and average latencies could be calculated.
As this burst of activity generally floods the network, it is
almost always guaranteed to have slightly higher latencies
than regular traffic unless the network happens to be extremely
saturated.

Ultimately the software portion of this project consisted of
2-3 components: modified hostapd (Host AP Daemon), and
a custom proof-of-concept program inject, one making use
of nl80211 (requiring mac80211 drivers), and the other
making use of Wireless Extensions.

A. Modified hostapd

HostAPD [5] is a program which replicates the functions of
dedicated access points through the use of consumer hardware.

As of now, it supports the following drivers: prism54,
madwifi, hostap2, wired, and nl80211. For the purposes
of this project, we made use of the nl80211 driver as it
is generic and can thus interface with a variety of different
hardware, providing the hardware supports interfacing with
nl80211/mac80211, thus it was fairly trivial to modify
HostAPD in order to add recognition for CHSW REQ and
CHSW ACK.

When using the nl80211/mac80211, HostAPD makes
use of two virtual devices on the physical phy. The first
device, e.g. wlan0 is the original virtual device that is set
to Master or AP mode to respond to clients. A second device
is created, e.g. mon.wlan0 to monitor and thus capture any
packets coming in to the device. This provides a fairly high
amount of control as each device has a dedicated task.

B. inject

inject is a proof-of-concept program that implements
dynamic channel switching either in Ad-hoc mode3 (with
another node also running inject), or in Infrastructure mode
with a modified hostapd. Upon startup, the program will:

• Determine the physical phy used for managing the virtual
wireless interfaces

• Create a monitor interface for directly capturing 802.11
frames

• Send bursts of probe requests to measure latency
• Gather data on signal level, noise level, quality, etc.
• Implement the node-end of the channel-switching proto-

col.

C. Implementation in non-mac80211 drivers

Implementation of dynamic channel switching was explored
in other non-mac80211 drivers (e.g. orinoco and hostap)
however these drivers proved hard to modify as frame man-
agement was done in firmware as opposed to the actual driver
itself. This makes it extremely hard to be able to make any sort
of trivial modification to frame management without having
any prior knowledge of how to modify the firmware. As such,
we made use of userspace inject to control and interact with
this device simply in monitor mode. It should be noted that
this is not reflective of real-world situations, as the driver does
not have support for concurrent modes on a single device, thus
there is no way to do external monitoring without disrupting
existing communications. In the end, while it was possible
to monitor all packets using either orinoco and hostap,
the use of firmware essentially made it impossible to use
inject without severe modification (i.e. using hardware-
specific system calls, modifying the firmware, etc.), which
would remove all aspects of generality within the project.

2It is important to note the difference between hostap and hostapd;
hostap is a driver that provides Master or AP mode capability in Prism/2.5/3
devices, while hostapd is the actual daemon userspace program that serves
as the AP software in Linux.

3Full IBSS capability in mac80211 is present in Linux kernels 2.6.30+

CS441 - WIRELESS NETWORKS, FALL 2009 5

D. Implementation in mac80211 drivers

The design of mac80211 is such that there is no theoretical
bound to how many virtual devices may exist on a single
phy. As such, it is fairly easy to create an additional virtual
device to monitor communications to and from the node
without disrupting existing communications. Thus, the version
of userspace inject in this implementation made use of
nl80211 functions exclusively to create a virtual monitoring
device, listen to that device for the appropriate CHSW frames,
and initiate the channel-switching protocol as necessary.

VII. RESULTS

Results of experimentation and implementation of the pro-
tocol may be divided into the following sections:

• Initial implementations
• Case study: One station, one AP
• Case study: Two nodes in Ad-hoc

A. Initial Implementations

It is interesting to note that initial testing to verify that
channel switching worked caused a number of interesting
problems to surface. Running inject with one station and
one AP with constant channel switch requests/responses (every
second or so) revealed a randomized problem where the two
devices would appear to get ”stuck” while in the middle of a
channel switch. This would be the case regardless of whether
the channel switches were sequential or randomized. Further
analysis revealed that occasionally, the CHSW ACK would
be lost in transit to the station, thus the AP would switch
channels and listen on the new channel, while the station was
stuck waiting for the CHSW ACK to verify initiate the switch.
One potential explanation for this is derived from the inherent
nature of the implementation of drivers in Linux: once data
is sent to a device, there is no guarantee that the device will
actually transmit the data in a timely fashion, i.e. control of
the packet/frame is at that point, exclusively under the control
of the physical device. It was found that a combination of
sending multiple CHSW ACKs on approval and only a single
CHSW NACK, and microsleep after queueing each frame for
transmission, mitigated this effect. It is also probable that at the
time, constant rapid channel switches would cause the device
to reset, thus clearing its buffer before the CHSW ACK would
actually be transmitted. It is also hypothesized that a greater
difference in channel switch (5 channels or more) may take
slightly longer (in terms of microseconds) to process in the
device, than a smaller difference (4 or less).

VIII. ONE STATION, ONE AP

The first case study performed was measuring the channel
switch made between one station connected to one AP. In
this case, a channel switch request is sent by the station to
the AP, and based on the AP’s status, it either approves or
denies the request. The initial implementation mandated strict
channel-switch policies in the event that several stations would
be connected to the AP at once. In such a case, the AP would
examine its local list of authenticated and associated stations,

determine how many of them recently made a channel switch
request, and if 50% or more of the stations have made the
request within a specified recent contention period, the AP
would approve the request by broadcasting a CHSW ACK. If
less than 50% of the stations fall within that contention period,
then the AP would send a specified CHSW NACK to the node
who initially requested the switch.

While this implementation would be useful for real-world
situations, it proved to be impractical for our tests. As such, a
benevolent channel-switch policy was implemented in addition
to the strict policy in hostapd, in the form of a macro flag
to trigger “friendly” mode. This policy essentially allowed for
constant channel switches requested by any node at any time.
For each type of test, 100 channel switches were made, to
mitigate the effect of any outliers present in the data. Data
collection was made on channel switch overhead with and
without the CHSW protocol devised above.

A. Data

TABLE I
CHANNEL SWITCH OVERHEAD WITH CHSW PROTOCOL

Channel Jump Avg Latency (ms) Std Dev (ms)
11 9.05 4.05
5 9.14 3.62
4 10.86 5.03
3 7.75 2.89
2 8.93 3.46
1 11.04 7.50

random 9.56 6.07
AVG 9.48 4.66

TABLE II
CHANNEL SWITCH OVERHEAD WITHOUT CHSW PROTOCOL

Channel Jump Avg Latency (ms) Std Dev (ms)
11 2.40 0.58
5 2.37 0.55
4 2.54 0.65
3 2.78 0.77
2 2.59 0.72
1 2.55 0.72

random 2.55 0.65
AVG 2.54 0.66

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

T
im

e
to

 S
w

itc
h

(m
s)

Difference in Channel Switch

Average Latencies in Channel Switching

With CHSW Protocol
Without CHSW Protocol

CS441 - WIRELESS NETWORKS, FALL 2009 6

B. Graphs

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 1

With CHSW Protocol
Without CHSW Protocol

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 6, 1

With CHSW Protocol
Without CHSW Protocol

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 7, 3

With CHSW Protocol
Without CHSW Protocol

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 8, 5, 2

With CHSW Protocol
Without CHSW Protocol

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 9, 7, 5, 3, 1

With CHSW Protocol
Without CHSW Protocol

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: adjacent

With CHSW Protocol
Without CHSW Protocol

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: random

With CHSW Protocol
Without CHSW Protocol

C. Analysis

In general, with the inclusion of the CHSW protocol, the
average channel switch time was between 7.83ms (3-channel
difference) and 11.15ms (1-channel difference), with an overall
average of 9.57ms. Without the inclusion of the CHSW proto-
col, the average channel switch time was between 2.37ms (5-
channel difference) and 2.78ms (3-channel difference), with an
overall average of 2.54ms. Different types of channel switches
were conducted, ranging from switching from opposite sides
of the 802.11b spectrum, to simply switching to an adjacent
channel. It should be noted that a channel in 802.11b has
overlap with 4 channels on either side, thus we measured
whether the fact that the overlap exists affected the latency
of the channel switch. As it turns out, the actual channel
switch time is very low, around 2-3ms, as most of the latency

CS441 - WIRELESS NETWORKS, FALL 2009 7

time occurs in CHSW negotiation (70+%). It seems that on
average, there is no difference in the type of channel switch
(i.e. how many channels exist between the starting frequency
and the ending frequency), although it should be noted that the
standard deviation was much higher when measuring laten-
cies including the protocol as opposed to latencies measured
without the protocol. Randomizing the channel “jump” had a
negligible effect on the latency measured.

As seen in the graphs, data in Table II was fairly consistent
(with standard deviation < 1ms), whereas there were several
outliers for the data in Table I. This can be attributed to a
number of different reasons:

1) No Guarantee of transmission: As mentioned above,
once a data frame/packet is sent to the actual device, there
is no guarantee that it will actually be transmitted. The kernel
at that point has lost control of the data, giving sole control
of it to the wireless device.

2) External overhead/latencies: An attempt was made to
reduce all external effects by background programs and dae-
mons on the data capture. However, some daemons could
simply not be stopped as they were required for the running
of the operating system. These include the recent introduction
of udev into Linux-based systems; udev is the replacement
background device manager that polls all devices, checks
for the insertion of new devices, and dynamically loads any
modules into the kernel as necessary. It is theoretically possible
that udev may have been in the middle of one of its polling
cycles for a partial duration of the data capture.

3) Protocol Overhead: It is quite possible that latencies
were introduced due to delay in both transmission and recep-
tion of the packet. In this case, actual channel switching only
accounted for 30% of the total latency measured, while the
remainder of the time was spent with the device waiting for
an ACK/NACK and processing the result as necessary.

Overall, it was found that regardless of difference in
channel, latency in physical switching including the CHSW
protocol is small, around 10ms or so, and actual channel
switching takes 3ms.

IX. TWO NODES IN AD-HOC MODE

The second case study performed was measuring the chan-
nel switch made between two nodes connected in ad-hoc
mode. In this case, one of the nodes is designated to be
the virtual AP, thus given the role to accept/deny channel
switch requests for the entire network. Due to resource (lack
of laptops) and time constraints, the full protocol could not be
implemented and tested, thus each laptop was given a manual
designation as to whether it would serve as a virtual client or
virtual AP. Then a similar protocol to the one above is carried
out between the virtual AP and the virtual client nodes. For
each type of test, 50 channel switches were made, to mitigate
the effect of any outliers present in the data. Data collection
was made on channel switch overhead with and without the
CHSW protocol devised above.

A. Data

TABLE III
CHANNEL SWITCH OVERHEAD WITH CHSW PROTOCOL

Channel Jump Avg Latency (ms) Std Dev (ms)
11 6.47 1.79
5 5.09 1.32
4 5.09 2.62
3 4.81 1.07
2 5.44 1.86
1 5.11 1.38

random 5.04 1.20
AVG 5.29 1.43

TABLE IV
CHANNEL SWITCH OVERHEAD WITHOUT CHSW PROTOCOL

Channel Jump Avg Latency (ms) Std Dev (ms)
11 1.98 0.29
5 1.86 0.06
4 1.95 0.30
3 1.89 0.09
2 2.10 1.15
1 1.86 0.24

random 1.91 0.28
AVG 1.66 0.34

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

T
im

e
to

 S
w

itc
h

(m
s)

Difference in Channel Switch

Average Latencies in Channel Switching

With CHSW Protocol
Without CHSW Protocol

B. Graphs

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 1

With CHSW Protocol
Without CHSW Protocol

CS441 - WIRELESS NETWORKS, FALL 2009 8

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 6, 1

With CHSW Protocol
Without CHSW Protocol

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 7, 3

With CHSW Protocol
Without CHSW Protocol

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 8, 5, 2

With CHSW Protocol
Without CHSW Protocol

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: 11, 9, 7, 5, 3, 1

With CHSW Protocol
Without CHSW Protocol

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: adj

With CHSW Protocol
Without CHSW Protocol

 0

 5

 10

 15

 20

 0 10 20 30 40 50

T
im

e
to

 S
w

itc
h

(m
s)

nth Channel Switch

Channel Switching Overhead between channels: random

With CHSW Protocol
Without CHSW Protocol

C. Analysis

In general, with the inclusion of the CHSW protocol, the
average channel switch time was between 4.81ms (3-channel
difference) and 6.47ms (11-channel difference), with an overall
average of 5.29ms. Without the inclusion of the CHSW proto-
col, the average channel switch time was between 1.86ms (1,5-
channel difference) and 2.10ms (2-channel difference), with
an overall average of 1.66ms. Like the previous experiment,
different types of channel switches were conducted, ranging
from switching from opposite sides of the 802.11b spectrum,
to simply switching to an adjacent channel. As in the previous
experiment, the actual channel switch time is very low, around
1-2ms, suggesting that the time needed for an actual channel
switch is negligible. Again, most of the latency time occurs in
CHSW negotiation (70+%). It seems that on average, there
is no difference in the type of channel switch (i.e. how many
channels exist between the starting frequency and the ending
frequency), although, switching channels 3 at a time proved to
have the lowest latencies. Again, the standard deviation was
much higher when measuring latencies including the protocol
as opposed to latencies measured without the protocol. Ran-
domizing the channel “jump” had a negligible effect on the
latency measured.

As seen in the graphs, data in Table IV was fairly consistent
(with standard deviation < 1ms), whereas there were several
outliers for the data in Table III (although these are less
prominent than that in Table I). This can be attributed to a
number of different reasons:

CS441 - WIRELESS NETWORKS, FALL 2009 9

1) No Guarantee of transmission:
2) External overhead/latencies:
3) Protocol Overhead: It is interesting to note that overall

latencies for Ad-hoc networks was significantly less than that
of Infrastructure networks, by a factor of 2. This suggests
one of two possible outcomes: a) each chipset handles 802.11
management frames significantly differently such that it incurs
unneeded latency; or b) the protocol in Infrastructure mode
adds a significant amount of unneeded overhead, possibly due
to the fact that additional beacon frames are broadcasted (and
thus processed by any listening nodes in the area).

4) External Interference: One particular unique point of
this experiment was the initial trouble to get the two nodes to
communicate with each other acceptably on channel 3. As the
experiment was conducted in a civilian setting, this problem
in communication could be attributed to any consumer devices
within the area that happened to be emitting electromagnetic
radiation on a harmonic close to 2.4GHz. In this case, the
offending device was localized to be a digital television
set/box, as when the test equipment was moved to another
area, the interference problem was mitigated.

Overall, it was found that regardless of difference in
channel, latency in physical switching including the CHSW
protocol is small, around 6ms or so, and actual channel
switching takes 2ms.

X. FUTURE WORK

Due to resource and time constraints, not all aspects of the
protocol devised above could be implemented. As such, a full
implementation of the protocol remains in the area of future
work, as the basis for channel negotiation and switching have
been laid down.

Additionally, the current protocol design calls for deauthen-
tication/disassociation of all stations in Infrastructure mode
when the AP approves a channel switch request. For purposes
of mobility, this proves extremely convenient as the act of
disassociation will forcibly disconnect all network streams
using the wireless interface. However, as the act of associ-
ation/disassociation merely establishes a virtual link between
station and AP, it seems possible that a channel switch may be
made without having to disassociate the nodes, thus preserving
all existing connections. As such, design and implementation
of a protocol that will preserve network streams above the
MAC layer while negotiating and fulfilling a channel switch
amounts to another area of future work.

XI. CONCLUSION

We implemented a mechanism to mitigate problems in
wireless communication incurred by interference. Our scheme
assesses the health of a channel in real-time by monitoring
signal strength, noise, and average latency between communi-
cating nodes, and coordinates a net-wide channel switch when
the interference level crosses a programmable threshold. The
actual time required to switch channels is negligible in both
infrastructure and ad-hoc modes given the relative advantage
of communicating on an inteference-free channel, however any
coordination protocols add a significant amount of overhead

(triples or more the initial latency). However, it appears
that the protocol negotiation for Infrastructure networks adds
significantly more overhead than that for Ad-hoc networks.

In addition to this, we provided a background into the
mac80211 framework, and subsequently the nl80211 li-
braries used for interfacing with the framework. This provides
any user with full control of management of 802.11 frames,
making it trivial to modify an/or add to existing schemes
within the 802.11 protocol, while remaining generic enough
to apply to a wide variety of hardware.

In this project we have laid a basic framework in the
method and manner of implementing an advanced channel-
switching protocol. Future work remains to fully implement
the protocol devised, utilizing the full capabilities of the
mac80211 framework present in the Linux kernel.

REFERENCES

[1] ”IEEE 802.11-2007: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications”. IEEE. 2007-03-08.
http://standards.ieee.org/getieee802/802.11.html

[2] ”mac80211 - Linux Wireless”. Linux Wireless.
http://wireless.kernel.org/en/developers/Documentation/mac80211

[3] ”p54 - Linux Wireless”. Linux Wireless.
http://wireless.kernel.org/en/users/Drivers/p54

[4] ”Intel Wireless WiFi Link Drivers”. Intel Corporation.
http://intellinuxwireless.org/

[5] Jouni Malinen. ”hostapd: IEEE 802.11 AP, IEEE
802.1X/WPA/WPA2/EAP/RADIUS Authenticator”. 2009-11-28. 2009-
12-05. http://hostap.epitest.fi/hostapd/

[6] ”The Slackware Linux Project: General Information” 2009-11-28.
http://slackware.com/info/

[7] ”Beginners’ Guide - ArchWiki”. ArchWiki. 2009-10-15.
http://wiki.archlinux.org/index.php/Beginners Guide

[8] Dell Wireless 1450 WLAN USB 2.0 Adapter Product Specifications.
http://www.dell.com/downloads/us/products/optix/dell1450 spec.pdf

[9] Jean Tourrilhes. ”Wireless Tools for Linux”.
http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html

[10] Jean Tourrilhes. ”Wireless Extensions for Linux”.
http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Linux.Wireless.Extensions.html

